Animal Source Identification Using A Cryptosporidium DNA Characterization Technique by Michael Royer U.S. Environmental Protection Agency Edison, New Jersey 08837 Lihua Xiao and Altaf Lal Centers for Disease Control and Prevention Atlanta, Georgia 30341 NATIONAL RISK MANAGEMENT RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 NATIONAL CENTER FOR INFECTIOUS DISEASES DIVISION OF PARASITIC DISEASES CENTERS FOR DISEASE CONTROL and PREVENTION U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES ATLANTA, GEORGIA 30341 ### **NOTICE** The U.S. Environmental Protection Agency through its Office of Research and Development partially funded and collaborated in the research described here under EPA/NRMRL-HHS/CDC interagency agreement DW 75937984. It has been subjected to the Agencies' peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. #### **FOREWORD** The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory is the Agency's center for investigation of technological and management approaches for preventing and reducing risks from pollution that threatens human health and the environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels. This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients. Hugh W. McKinnon, Director National Risk Management Research Laboratory #### **ABSTRACT** This document summarizes the application of a particular molecular method to improve detection and differentiation of species and genotypes of *Cryptosporidium* oocysts found in environmental samples. Of particular interest is the method's potential for determining the source animal types of oocysts in water samples. The molecular method is a nested polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) procedure that characterizes the small sub-unit (SSU) ribosomal RNA gene. The method was previously developed for characterizing oocyst DNA from clinical samples. The current project explores the method's applicability to environmental water samples, which have greater diversity of oocyst species and strains, lower concentrations of oocysts, and different interferents than clinical samples. Results include demonstrating that the method is capable of detection and differentiation of at least 10 species and 22 genotypes of *Cryptosporidium*; method sensitivity demonstrated to a single oocyst with laboratory samples; and detection and differentiation of oocysts from oyster gill washings and hemolymph, storm water, surface water, and raw waste water. The method's capability to determine an oocyst's source animal type was demonstrated by identification in environmental water samples of host-adapted *Cryptosporidium* species and genotypes that were consistent with the source animal types (i.e., humans, farm animals, wildlife, and/or pets) inhabiting the sampled watersheds. # TABLE OF CONTENTS | NOTICE | . ii | |---|-----------------------------------| | FOREWORD | . iii | | ABSTRACT | . iv | | LIST OF FIGURES | . vi | | ACKNOWLEDGMENTS | vii | | INTRODUCTION | | | Cryptosporidiosis and Cryptosporidium Benefits of Identifying Host Range of Cryptosporidium Oocysts in Water Determining the Host Range of Oocysts in Water Samples Developing a Collection of Infection Data for Cryptosporidium-Host Pairs Methods for Detailed Characterization of Oocysts Discovery of Correlations Between Characteristics of Oocysts and Their Host Ranges | . 1
. 2
. 2 | | PROJECT RATIONALE, OBJECTIVES, AND TASKS | . 4 | | MATERIALS AND METHODS Materials and Methods for Phylogenetic Analysis of Cryptosporidium Genus Based on SSU rRNA Gene | s | | Development Process for SSU rRNA-based Nested PCR-RFLP Method for Cryptosporidium Detection a Differentiation Evaluation of SSU rRNA-based Nested PCR-RFLP Method for Cryptosporidium Detection and Differentiation in Storm Water Samples | and
. 5 | | KEY RESULTS Results of Phylogenetic Analysis of Cryptosporidium Genus Based on SSU rRNA Genes of Five Types of | of | | Cryptosporidium Results of Development of SSU rRNA Nested PCR-RFLP Diagnostic Tool Evaluation of the SSU rRNA-based Nested PCR-RFLP Diagnostic Tool Gill Washings and Hemolymph from Oysters Storm Stream Flow Samples Raw Surface Water Samples Raw Wastewater Samples Comparison of PCR Protocols for Species Detection, Differentiation, and Genotyping of Cryptosporidiu | . 8
10
10
10
11
11 | | CONCLUSIONS AND RECOMMENDATIONS Specific Conclusions General Conclusions Recommendations Current problems in molecular detection of Cryptosporidium oocysts Actions needed to enable routine use of molecular tools in water sample analysis | 12
12
14
15 | | REFERENCES | 17 | | APPENDIX 1 – Molecular Tools | 19 | ## **LIST OF FIGURES** | Figure 1. Detection and Diagnosis of Cryptosporidium Parasites by Nested PCR-RFLP | |---| | Figure 2. Phylogenetic Relationships of Cryptosporidium Parasites to Other Apicomplexans(A) and Each Other(B) | | (Xiao et al., 1999a) 7 | | Figure 3. Updated phylogenetic relationship of Cryptosporidium parasites | | Figure 4. Detection of Cryptosporidium spp. by SSU rRNA-based Nested PCR | | Figure 5. Differentiation of Cryptosporidium Species and Genotypes by SSU rRNA-based PCR-RFLP | | Figure 6. Sensitivity of the SSU rRNA-based Cryptosporidium PCR-RFLP Genotyping Technique | | Figure 7. Differentiation of the Cryptosporidium Parasites in Storm Water Samples by SSU rRNA-based PCR- | | RFLP11 | #### **ACKNOWLEDGMENTS** Much of the work described in this report on the SSU rRNA nested PCR-RFLP method was conducted under EPA/NRMRL-HHS/CDC interagency agreement DW 75937984. The work conducted under this interagency agreement built upon method development work previously conducted under EPA/Office of Water-HHS/CDC interagency agreement 75937730, and a substantial amount of collaboration also occurred. Key collaborating researchers include Ronald Fayer, Agriculture Research Service of the U.S. Department of Agriculture; Kerri Alderisio, New York City Department of Environmental Protection; Una Ryan and R.C. Andrew Thompson, Murdoch University, Western Australia; Steve Gradus and Ajaib Singh, City of Milwaukee Public Health Laboratories; Thaddeus K. Graczyk, Johns Hopkins School of Hygiene and Public Health, and Joseph Limor, and Irshad Sulaiman, Centers for Disease Control and Prevention.